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Abstract

We recently presented a method for efficiently solving linear discontinuous discretizations of

the two–dimensional P1 equations on rectangular meshes. The linear system was efficiently solved

with Krylov iterative methods and a novel two–level preconditioner based on a linear continuous

finite element discretization of the diffusion equation. Here we extend the preconditioned solution

method to three–dimensional, unstructured tetrahedral meshes. Solution of the P1 equations

forms the basis of a diffusion synthetic acceleration (DSA) scheme for three–dimensional SN

transport calculations with isotropic scattering. The P1 equations and the transport equation

are both discretized with isoparametric linear discontinuous finite elements so that the DSA

method is fully consistent. Fourier analysis in three dimensions and computational results show

that this DSA scheme is stable and very effective. The fully consistent method is compared to

other “partially consistent” DSA schemes. Results show that the effectiveness of the partially

consistent schemes can degrade for skewed or optically thick mesh cells. In fact, one such scheme

can degrade to the extent of being unstable even though it is both unconditionally stable and

effective on rectangular grids. Results for a model application show that our fully consistent DSA

method can outperform the partially consistent DSA schemes under certain circumstances.



1. INTRODUCTION

In this paper, we consider diffusion synthetic acceleration schemes for the linear discontinuous finite element

method (DFEM) discretization of the SN transport equation on three–dimensional unstructured tetrahedral

meshes. See Ref. 1 and references therein for a description of the DFEM for the SN equations on unstructured

meshes.

For many problems diffusion synthetic acceleration (DSA) is needed to accelerate convergence of the SN

source iterations.2,3 It is well known that the discretization of the diffusion equation in a DSA scheme must

be “consistent” with the SN transport equations discretization in order to be effective and robust for a wide

range of problems.4,5 The effectiveness of a DSA scheme can be measured by the spectral radius of the

accelerated algorithm. The spectral radius is always less than one for a useful algorithm. The closer it is to

zero the more quickly the iterations converge. Without spatial discretization, the DSA algorithm drastically

reduces the spectral radius in highly diffusive problems whose spectral radius would otherwise be close to

one.4,6 In the spatially discretized case, consistency is needed for DSA to achieve this level of effectiveness.

Our fully consistent DSA method is based on a discretization of the P1 equations using the same linear

finite element basis used in the linear DFEM discretization of the SNequations on tetrahedral meshes. In both

discretizations, discontinuities are introduced by “upwinding” the variables of interest. The linear system

of the P1 discretization is large and sparse. This is because there is a large number (sixteen) of unknowns

per cell making direct solution methods impractical even for problems of intermediate size. We therefore

solve the discontinuous P1 equations iteratively with Krylov–subspace methods. Although we only have to

store the nonzeros of the sparse matrix the linear system will require significant memory and matrix–vector

products can be expensive.

An alternative to consistent DSA schemes are those in which the diffusion equation discretizations are

only partially consistent with the transport discretization.1,7–9 The idea is to reduce the complexity and

increase the efficiency of the DSA algorithm. In one case, a scheme with a symmetric positive definite (SPD)

linear continuous finite element discretization of the diffusion equation centered on the mesh nodes (vertices)

is combined with a prescription to compute (or “update”) the necessary discontinuous quantities on a local,

cell–by–cell basis using the continuous diffusion equation solution.1,7 We will refer to this method as the

WLA (Wareing, Larsen and Adams) DSA scheme. The fact that the discretization is centered on the nodes

means the linear system can be relatively small because often there are many fewer nodes than cells on

unstructured tetrahedral meshes. Because this system is SPD it can be solved by the method of conjugate

gradients, which has modest memory requirements and low computational complexity. Thus, the WLA DSA

method can be very efficient. In another approach, Larsen’s so–called four step method4 is modified to find

a nonsymmetric linear system for the discontinuous scalar fluxes.8,9 This is referred to as modified four step

(M4S) DSA. Because this method involves only the scalar fluxes, the dimension of the linear system is one
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quarter of the dimension of the fully consistent method. Even with the smaller dimension, direct methods

can be impractical for large problems. However, a Krylov–subspace iterative method will need less work

per iteration than the fully consistent method and the partially consistent diffusion equations can be solved

more efficiently.

The increased efficiency of the partially consistent DSA methods can sometimes come at the cost of

decreased effectiveness. This can be tolerated as long as the cost of a DSA step is relatively cheap and the

degradation in effectiveness is not too extreme. However, partial consistency could result in situations where

the DSA method no longer accelerates the transport iterations. We found that the effectiveness of the WLA

DSA scheme decreases as the cells in a problem become optically thick and diffusive. We also discovered

that in certain problems with skewed cells, the M4S method degrades to the point where it causes the SN

source iterations to diverge.

Because the DSA scheme we present here is consistent, the spectral radius and, hence, the number

of source iterations will be reduced significantly. But it can be competitive with the partially consistent

methods only if the solution of the discontinuous P1 equations can be computed efficiently. We are using

a Krylov–subspace iterative solution so we can improve solution efficiency with a good preconditioner. In

Ref. 10 we presented a two–level preconditioner for the discontinuous P1 equations on two–dimensional rect-

angular meshes. Analysis and numerical experimentation showed that this preconditioner, which is based

on a linear continuous finite element discretization of the diffusion equation, was efficient and very effec-

tive. We have extended this two–level preconditioned solution technique to the discontinuous P1 equations

on three–dimensional unstructured tetrahedral meshes. The solution method was implemented in the SN

transport code ATTILAV211 as a fully consistent DSA scheme. Our purpose is to discuss the linear DFEM

discretization and the two–level preconditioned iterative solution of the P1 equations. We also investigate

the overall efficiency of the accelerated SN transport solutions, comparing the fully consistent DSA method

to the partially consistent methods.

The remainder of the paper is organized as follows. In the next section we derive a linear DFEM

discretization of the P1 equations on tetrahedral meshes. We then discuss how we solve these equations with

a Krylov–subspace iterative method and our two–level preconditioner. The third section presents the details

of three–dimensional Fourier analysis on tetrahedra that we use to predict the effectiveness of a DSA scheme.

In the fourth section we compare Fourier analysis predictions of the spectral radius to actual measurements of

the spectral radius made with ATTILAV2. A moderately sized, realistic example problem is used to measure

the computational effort of the accelerated SN solution methods. All the results compare the fully consistent

DSA method to the partially consistent DSA schemes which have also been implemented in ATTILAV2.

The paper concludes with some summary closing remarks.
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2. DISCONTINUOUS P1 EQUATIONS ON TETRAHEDRAL MESHES

In this section, we will derive a DFEM discretization for the diffusion equation by noting that the (time–

independent) system of coupled, first order P1 equations and the second order diffusion equation are equiv-

alent. We can then discretize the first order system with a linear DFEM similar to that used for the SN

transport equation. The difference is that the angular flux unknown associated with the transport operator

is naturally identified with a unique direction of particle flow. These flow directions facilitate the intro-

duction of discontinuities into the discretization. In contrast, quantities corresponding to particle flows do

not exist naturally in the P1 system. Instead, the particle flows are defined using one of several possible

approaches.8–10,12

There has recently been a great deal of interest and activity in the applied mathematics community

relating to the development of discontinuous Galerkin methods for the discretization of partial differential

equations.13 To connect with this literature, we point out that the linear DFEM discretization of the SN

transport equation can be viewed as a linear discontinuous, Galerkin finite element method, denoted by

dG(1). Similarly, our consistent DFEM discretization of the P1 equations can be viewed as a “mixed” dG(1)

method for the diffusion equation.12 The numerical analysis of mixed discontinuous methods for elliptic

operators, like the diffusion operator, is an active area of research.

This section begins by describing the discontinuous DFEM discretization of the P1 equations on tetrahe-

dra. This is followed by a description of the two–level preconditioning technique using a linear continuous

discretization of the diffusion equation. A brief discussion of the DSA algorithm follows that, and the section

concludes with ways to improve the efficiency of the DSA algorithm.

2.1 The Discretized Equations

The steady–state P1 equations in three–dimensional geometry are

1

3
∇Φ(r) + σt(r) J(r) = Q1(r), (1a)

∇ · J(r) + σa(r) Φ(r) = Q0(r). (1b)

The usual particle transport notation is used here: Φ(r) represents the scalar flux (zeroth angular moment

of the angular flux), J(r) represents the current vector (first angular moment of the angular flux), and r ∈ V

is the position vector in some domain V . The source terms Q0(r) and Q1(r) are the zeroth and first angular

moments of an inhomogeneous source, a material property. It is often assumed the material emits particles

isotropically such that Q1(r) is zero. The first expression is a vector equation referred to as the first moment

equation(s). The second is called the balance equation. For clarity they will consistently be written in this

order.
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Boundary conditions for the P1equations are specified by separating the flow of particles through a surface

into inwardly and outwardly directed flows. One way to do this is to use the P1 approximation itself and

assume the angular flux is linear in angle: Ψ(r, Ω̂) = 1
4π Φ(r) + 3

4π Ω̂ · J(r). Under this approximation, the

inwardly directed flow (partial current) of particles through a surface located at rs with outward unit normal

n̂ can be expressed as

J in(rs) =

∫
(
n̂·Ω̂

)
<0

(
n̂ · Ω̂

)
Ψ(rs, Ω̂) dΩ =

1

4
Φ(rs) −

1

2
n̂ · J(rs), (2a)

and an outwardly directed flow as

Jout(rs) =

∫
(
n̂·Ω̂

)
>0

(
n̂ · Ω̂

)
Ψ(rs, Ω̂) dΩ =

1

4
Φ(rs) +

1

2
n̂ · J(rs). (2b)

We will consider vacuum or reflection boundary conditions. For vacuum conditions, assume no external

angular flux of particles enters the through the external boundary surface, ∂V ⊂ V , that is, Ψ(rs, Ω̂) = 0

for rs ∈ ∂V and
(
n̂ · Ω̂

)
< 0. Then the vacuum condition, or Marshak boundary condition, relates the

scalar flux and currents on the boundary through Eq. 2a by setting J in(rs) = 0 for rs ∈ ∂V . Reflection

boundary conditions are specified by simply setting J in(rs) = Jout(rs). We will also need Eqs. 2 later when

we “upwind” our discontinuous discretization.

We can construct the DFEM discretization of the P1 equations by defining a linear finite element basis

on a tetrahedral cell Tk ∈ V . A local ordering of the faces and vertices of a cell is established such that face

i is the face opposite from vertex i. The bases Li, i = 1, 4 are defined in terms of local coordinates (u, v, w)

and can be mapped to and from the global coordinate system as follows. On the “master” tetrahedron,

illustrated in Fig. 1, the barycentric coordinates are

L1 = u, (3a)

L2 = v, (3b)

L3 = w, (3c)

L4 = 1 − L1 − L2 − L3 = 1 − u − v − w, (3d)

Their use simplifies the derivation and is easily generalized to higher order elements. The linear basis function

we use here are just the barycentric coordinates themselves. Each of them are unity at their respective

vertices and zero at the other three vertices. Together with Eqs. 3, the mapping between the global Cartesian

coordinates of the mesh vertices, as illustrated in Fig. 2 for example, and the local barycentric coordinates

can be established by representing the global coordinates r = (x, y, z) in terms of a linear combination the
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Figure 1. The master tetrahedron with vertices in (u, v, w) coordinates at v1 = (1, 0, 0), v2 = (0, 1, 0),

v3 = (0, 0, 1), and v4 = (0, 0, 0). The local coordinate axes are the barycentric coordinates L1, L2

and L3 (the fourth barycentric coordinate is not shown).
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Figure 2. A tetrahedron in the global coordinate space r = (x, y, z) with four vertices r1, r2, r3, r4.

barycentric coordinates (L1, L2, L3, L4) as follows:

x = L1x1 + L2x2 + L3x3 + L4x4 (4a)

y = L1y1 + L2y2 + L3y3 + L4y4 (4b)

z = L1z1 + L2z2 + L3z3 + L4z4 (4c)

1 = L1 + L2 + L3 + L4. (4d)

More on the use of barycentric coordinates can be found in Ref. 14.
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Now we expand the scalar fluxes an currents on a cell in terms of the basis functions. These approxima-

tions are respectively denoted by Φh and Jh. The general discrete problem reads as follows:

compute the approximations Φh and Jh on a cell Tk satisfying

1

3

∫

∂Tk

Φb
h (n̂ · wh) dS − 1

3

∫

Tk

Φh (∇ · wh) dV + σt,k

∫

Tk

Jh · wh dV =

∫

Tk

Q1 · wh dV, (5a)

∫

∂Tk

(
n̂ · Jb

h

)
uh dS −

∫

Tk

Jh · ∇uh dV + σa,k

∫

Tk

Φhuh dV =

∫

Tk

Q0uh dV, (5b)

for all trial functions uh and wh.

We have used the divergence theorem to integrate terms involving gradients. This is necessary for introducing

the discontinuous approximation.

The linear trial space consists of the four scalar trial functions uh, which are just the four basis function

Li written in terms of the global coordinate system. The four vector trial functions wh, are also written in

terms of these basis functions as Li ı̂ + Lî + Lik̂ for i = 1, . . . , 4, where ı̂, ̂ and k̂ are unit basis vectors that

point in the direction of the positive x, y and z axes, respectively. Equations 5 are written at the vertex

of every cell. The vector equation, Eq. 5a, is written separately for each of the x, y, and z components at

the four cell vertices. The result is sixteen equations in sixteen unknowns for every cell in the mesh. The

unknowns are the values of flux, Φi,k and three current components Jx
i , Jy

i , and Jz
i at the four cell vertices,

i = 1, 4. The flux and currents are discontinuous, defined separately in each cell as the limiting values of

Φ(r) and J(r) as r → ri from within the cell.

The integrals over the boundary of the tetrahedral cells, ∂Tk, contain the quantities Φb
h and

(
n̂ · Jb

h

)
,

indicating that they are “boundary” terms. They are uniquely defined in terms of the particle flows through

the cell faces, using a linear combination of the discrete discontinuous unknowns from the two adjacent cells

sharing a particular face. The three discontinuous values of the scalar flux and currents on the cell face of a

particular cell are used to define the outgoing particle flow through the face. The three discontinuous values

of the flux and currents from the adjacent cell that shares the face are used to define the incoming particle

flow through the face. If the face of a cell constitutes an external boundary, the incoming flow is specified

according to the boundary conditions.

The integrations of the boundary terms in Eqs. 5 give rise to expressions of the form n̂jΦ
b
i and

(
n̂j · Jb

i

)

at three vertices i on a face j with outward normal n̂j . One way to define the upwind particle flows for

the discontinuous discretization is to use discrete versions of the partial currents as follows. Adding and
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subtracting the continuous partial currents we can write

Φb
h = 2

(
Jout + J in

)
(6a)

(
n̂ · Jb

h

)
= Jout − J in. (6b)

Use these relationships for vertex i and specify boundary conditions by setting ξj according to

ξj =





0 if face j is vacuum or internal,

1 if face j is reflective,

to get the necessary quantities:

n̂j Φb
i = 2 n̂j

(
Jout

j,i [1 + ξj ] + J in
j,i [1 − ξj ]

)
(7a)

(
n̂j ·Jb

i

)
=

(
Jout

j,i − J in
j,i

)
[1 − ξj ]. (7b)

The particle flow definitions are completed by defining the partial currents in these last expressions. The

flows into and out of face j at vertex i are

J in
j,i =

1

4
Φext

i − 1

2
n̂j ·Jext

i (7c)

Jout
j,i =

1

4
Φi +

1

2
n̂j ·Ji, (7d)

where “ext” denotes exterior quantities. They are the quantities from the adjacent cell that shares face j

with cell k and “across” the face from vertex i.

Another way to define the upwinded boundary terms is borrowed from computational fluid dynamics.15,16

Consider the homogeneous, time–dependent P1 equations in a void,

∂Φ(r, t)

∂t
+ ∇ · J(r, t) = 0, (8a)

∂J(r, t)

∂t
+

1

3
∇Φ(r, t) = 0, (8b)

and the advection of a plane wave with wave number κ oriented in the normalized direction n̂ = nx ı̂+ny ̂+

nz k̂,

u(r, t) =




Φ(r, t)

Jx(r, t)

Jy(r, t)

Jz(r, t)




=




α0(t)

αx(t)

αy(t)

αz(t)




eiκ(n̂·r) ≡ α(t)eiκ(n̂·r). (9)
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Equations 8 can then be written as a first–order vector wave equation

αt + iκHα(t) = 0, (10)

the subscript t denoting a time derivative. The matrix

H =




0 nx ny nz

1
3nx 0 0 0

1
3ny 0 0 0

1
3nz 0 0 0




(11)

is then diagonalized such that H = RΛR−1, where

R =




1 1 0 0

1√
3
nx − 1√

3
nx 1 0

1√
3
ny − 1√

3
ny 0 1

1√
3
nz − 1√

3
nz −nx

nz
−ny

nz




(12a)

R−1 =




1
2

√
3
2 nx

√
3
2 ny

√
3
2 nz

1
2 −

√
3
2 nx −

√
3
2 ny −

√
3
2 nz

0 (n2
y + n2

z) −nxny −nxnz

0 −nxny (n2
x + n2

z) −nynz




(12b)

and Λ = diag( 1√
3
,− 1√

3
, 0, 0) is the diagonal matrix of eigenvalues of H.

Multiplying Eq. 10 through by R−1 we get

βt + iκΛβ(t) = 0, (13)

where β(t) = R−1α(t). Because Λ is diagonal the solutions of Eq. 13 decouple, leading to

β(t) = β(0) e−iκλjt, j = 1, 4. (14)

Noting that α(t) = Rβ(t), we can multiply this through by R to find the solutions

α(t) = α(0) e−iκλjt, j = 1, 4, (15)

for some initial amplitude α(0).

Therefore, under the transformation to “characteristic variables”, v(t) = R−1u(t), plane waves are prop-
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agated with (constant) wave–speeds defined by the non–zero eigenvalues ± 1√
3
. Now, this is useful to us

even in the time–independent case because we can identify “flow directions” with these eigenvalues relative

to the direction vector of the plane wave, n̂. If this direction is taken to be the outward normal vector of

some surface, we associate outwardly directed flows through that surface with the positive eigenvalue and

inwardly directed flows with the negative eigenvalue. Transformation of the (time–independent) solution

vector
[
Φ(r), Jx(r), Jy(r), Jz(r)

]T

to characteristic variables gives the expressions

J± =
1

2
Φ(r) ±

√
3

2
n̂ · J(r) (16)

that correspond to outwardly and inwardly directed flows, respectively. These equations can be used to

define the “boundary” terms in Eqs. 5, as an alternative to Eqs. 2. Adding and subtracting these expressions

gives

Φb
h =

(
J+ + J−

)
(17a)

(
n̂·Jb

h

)
=

1√
3

(
J+ − J−

)
. (17b)

For a given face j and vertex i on some cell k, we find

n̂j Φb
i = n̂j

(
Jout

j,i [1 + ξj ] + J in
j,i [1 − ξj ]

)
(18a)

(
n̂j ·Jb

i

)
=

1√
3

(
Jout

j,i − J in
j,i

)
[1 − ξj ], (18b)

where the flows into and out of the face are given by

J in
j,i =

1

2
Φext

i −
√

3

2
n̂j ·Jext

i (18c)

Jout
j,i =

1

2
Φi +

√
3

2
n̂j ·Ji. (18d)

No matter what choice is made for defining the particle flows, we order the unknowns on the mesh first

by the current vector for each vertex on every cell, followed by the scalar flux for each vertex on every cell.

Then we can write the linear system in the (2 × 2) block form




At
1
3A0

−AT
0 Aa






J

Φ


 =




f

g


 , (19)

We have observed that the submatrices At and Aa are symmetric positive definite (SPD). Hence the system
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can also be written in the symmetric indefinite form




3At A0

AT
0 −Aa







J

Φ


 =




3f

−g


 , (20)

Finally, we note that we can compute a Schur complement, S, of the (2× 2) block linear systems above.

It is formed by block Gaussian elimination (which can be viewed as eliminating the currents in favor of the

scalar fluxes) resulting in the SPD linear system

SΦ =
[
Aa + AT

0 (3At)
−1A0

]
Φ = g + 3

[
(3At)

−1A0

]
f , (21)

for the discontinuous scalar fluxes only. On tetrahedra this reduced system involves 1/4 the number of

unknowns of the original full P1 system of equations. This is potentially a tremendous savings for transport

acceleration since only the scalar fluxes are needed for that purpose and the method of conjugate gradients

(CG) can be used to solve the reduced linear system. We would not form the reduced system directly because

the discontinuous approximation introduced into the discretization leads to a globally coupled system. That

is, the inverse (3At)
−1 is dense and, therefore, so is the Schur complement. Instead we can implicitly

compute the “action” of the Schur complement as needed. Iterative solution algorithms supply vectors u

for which the matrix–vector product v = Su is to be returned to the algorithm. We compute the action of

the Schur complement by first calculating s = A0u for a given vector u. Then we use an inner iteration to

approximately calculate t = (3At)
−1s and complete the computation by calculating v = Aau + AT

0 t. Even

though the CG algorithm is used for both SPD linear systems we have found that a combined inner–outer

iteration is not as efficient as our methods for solving the full system. One way to remedy this could be

to compute the Cholesky factorization of the At block which is first reordered for minimum fill–in. Then,

instead of an inner iteration, the action the Schur complement simply requires a forward and backward

substitution at every outer CG iteration. The cost of computing the factorization is amortized over the

course of the CG iterations and the Schur complement matrix–vector computation will be very fast once we

have stored the factorization. A drawback is that the Cholesky factorization is not necessarily efficient on

parallel platforms. Furthermore, the fill–in associated with the factorization increases memory requirements.

We plan to explore solution of the reduced system in the future.

2.2 Solution Methods

The discontinuous P1 equations, Eq. 19 or Eq. 20, form an sparse linear system, Ax = b. To be used as part

of a DSA scheme, we must solve this system efficiently. For large problems direct methods are infeasible,

so we use iterative solution techniques to which we can apply multilevel acceleration methods. Iterative

10



solution methods also allow us to take advantage of the sparsity of the linear system by storing only the

nonzeros of the matrix.

Our solution technique consists of a two–level iteration. An outer Krylov–subspace iterative method is

used to solve the discontinuous P1 equations. To compute the iterative solution efficiently, a preconditioner

M is needed that can adequately alter the spectrum of the original matrix A. Loosely speaking, the precon-

ditioner will be effective if the eigenvalues of the preconditioned matrix M−1A are clustered and bounded

away from the origin.17 We have found that the convergence rate of the outer Krylov iteration improves

if the condition number, measured by the ratio of the maximum to minimum singular values of M−1A, is

smaller than that of the original system. This is only a rough indicator of preconditioner effectiveness.10,18

A preconditioner for the discontinuous P1 equations on two–dimensional rectangular meshes was presented

in Ref. 10. We have extended the method to three–dimensional unstructured tetrahedral meshes. The pre-

conditioner uses a linear continuous finite element discretization of the diffusion equation. Solution of the

corresponding linear system is the second level of our two–level preconditioning technique.

In Ref. 10 we showed that the two–level preconditioner on rectangular meshes was effective over a wide

range of problems and seems to be particularly well–suited to solving problems which are optically thick and

diffusive. This is fortunate because these happen to be just the kinds of problems for which we would like to

solve the P1equations as part of a transport acceleration algorithm. Using the linear continuous discretization

for the diffusion equation as a preconditioner was suggested by the observation that discontinuities in the

P1 solution disappear as the problem becomes optically thick and diffusive. The preconditioner scaled very

well with problem size in two dimensional geometry with rectangular meshes but the convergence rates of

both the inner and outer iterations degraded for cells that are very optically thin in one or both dimensions.

At every iteration, the Krylov solver supplies a vector r requesting that a vector z = M−1r be returned

to the solver. In our case, this is computed implicitly. That is, we “solve” Mz = r for z without explicitly

forming or inverting a matrix M . This will made clearer if one examines our two–level approach as displayed

in Algorithm 1.

Algorithm 1. Two–Level Preconditioner

z ← 0

s ← r − Az

z ← z + ωÃ−1s

s ← r − Az

z ← z + C−1s

s ← r − Az

z ← z + ωÃ−1s
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The algorithm consists of three distinct steps, giving it the character of a two–stage multigrid V–cycle.

Solution of the linear continuous finite element discretization of the diffusion equation, denoted by the

operator C−1, resides at the lowest level. It is preceded and followed smoothing iterations, where Ã is some

simple approximation to A. It is this entire series of computations that is implicitly represented by the

operator M−1 acting on some vector r.

The operator C−1 in Algorithm 1 is computed implicitly as well. The diffusion equation is discretized

using linear continuous finite elements such that unknowns are located on the mesh vertices. The linear

system corresponding to this discretization is of lower dimension (RNv , with Nv being the number of vertices

in the mesh) than that of the discontinuous P1 equations (R16Nc , where Nc is the number of cells in the

mesh). Note that typical tetrahedral meshes contain roughly four or five times as many cells as vertices. The

computation of C−1 therefore consists of three steps: a projection, a matrix inversion, and an interpolation,

written symbolically as C−1 = QD−1P . The matrix P projects from from R
16Nc onto R

Nv and the matrix Q

interpolates back again. The projections are computed as a source term for each cell–vertex centered diffusion

equation by summing an appropriate combination of the discontinuous scalar flux and current residuals from

all the cells surrounding a vertex. This is discussed in more detail below. The interpolations simply assign the

same continuous diffusion equation solution to all the discontinuous scalar fluxes surrounding a particular

vertex; the currents are left unchanged. The matrix D−1 represents the inverse of the linear continuous

diffusion equations which is computed approximately using preconditioned conjugate gradients (PCG) with

simple diagonal preconditioning.

The smoothing operator (matrix) Ã is either the block–diagonal matrix extracted from the discontinuous

P1 matrix on a cell–by–cell basis, represented by B, or it is the identity I. For the former case, the smoother

is a block–Jacobi iteration and in the latter case it is a Richardson iteration. In the block–Jacobi iteration,

each block is a (16 × 16) matrix representing the coupling between all the unknowns (scalar fluxes and

currents) on a cell. Each block can be evaluated independently, one cell at a time, which could potentially

be very efficient in a parallel implementation. Overall, the preconditioner with Richardson smoothing is less

efficient than with block–Jacobi smoothing. In this paper we consider only Ã = B.

Manipulation of the P1 equations leads to a source term that represents the “correct” projection operator.

We start by assuming the discontinuous unknowns in the P1 equations are continuous at the vertices. We

then write the balance equations and moment equations (in vector form) for the four vertices on some cell k.

The right hand side of the P1 equations is set to a “residual” vector of the discontinuous operator; referring

to Algorithm 1 this vector is s = r−Az, where z is the updated vector from the first block Jacobi iteration.

The four moment equations are added together to find an expression for the average current vector on a cell,

noting that the area vectors of a cell sum to zero and that the outwardly directed area vectors for a face

shared by two cells are the negative of one another. The expression for the average current appears in the
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four balance equations on a cell. Inserting that expression into the balance equation for vertex j on cell k

gives

aj

27σt,kVk
·
( 4∑

i=1

ai φi

)
+

σa,kVk

20

(
2φj +

4∑

i=1

i6=j

φi

)
= sj,k − aj

3σt,kVk
·
( 4∑

i=1

si,k

)
, (22)

which is the linear continuous finite element discretization of the diffusion equation. The right hand side is

the projection of the discontinuous residual vector s, where sj,k is the residual in the scalar flux at vertex

j in cell k, the terms si,k are the residuals in the currents at all vertices i in cell k, and aj = n̂jaj is the

“area vector” of a face j having outward normal n̂j and area aj . The continuous unknowns, φn, are given

the global ordering of the mesh vertices. Every mesh vertex is shared by an arbitrary number of cells and

Eq. 22 is computed for the corresponding local vertex j on each of those cells. The equations are summed

over the surrounding cells, each one contributing to the coefficients of the continuous diffusion matrix, D,

for the row corresponding to that global vertex. The projection operation in an implementation follows from

this summation.

We use GMRES(m) for computing the solution of the discontinuous P1 equations if either the linear

system or the preconditioner is not symmetric.19 The projection operator and simple interpolation method

we use makes the preconditioner nonsymmetric, that is, Q 6= P T . We could also to use a solution method

appropriate for symmetric indefinite linear systems, such as MINRES or SYMMLQ, to solve the symmetric

indefinite form of the P1 equations.20 These linear solvers require the preconditioner to be SPD and we

can impose symmetry by defining Q = P T . We can ensure that the preconditioner is positive definite by

scaling the problem by some norm of the linear system. However, while these solvers are more efficient than

GMRES in terms of both the work required per iteration and storage requirements, imposing symmetry

turned out to degrade the effectiveness of the two–level preconditioner offsetting any potential savings in

computational effort. In the results reported here, we use GMRES(m) to solve the discontinuous P1 equations

in nonsymmetric form with the nonsymmetric preconditioner.

2.3 Diffusion Synthetic Acceleration

We now present a brief description of the diffusion synthetic accelerated iterative transport solution method.

The DFEM discretization of the SN transport equation uses the same linear basis functions as the P1

equations. We assume an angular quadrature
{
Ω̂m, wm

}
whose weights sum to unity and consider isotropic

scattering only. An inhomogeneous (isotropic) distributed source, Qm may also be specified. The angular

flux on a cell k expanded in terms of the basis functions is denoted by ψm,h and the discrete problem reads

as follows.
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For each angle Ω̂m find an approximation to the angular flux on a cell k, ψm,h satisfying

Ω̂m ·
(∫

∂Tk

n̂ ψb
m uh dS −

∫

Tk

ψ`+1
m,h∇uh

)
dV + σtk

∫

Tk

ψ`+1
m,h uh dV

= σsk

∑

m

wm

∫

Tk

ψ`
m,h uh dV +

∫

Tk

Qmuh dV

(23)

for all trial functions uh.

The trial functions are again just the four linear tetrahedral basis functions Li. These expressions are

computed for each vertex j on a cell k, giving four equations in four unknowns on every cell. The integrations

over the boundary of the tetrahedron ∂Tk give rise to terms having the form
(
Ω̂m·nj

)
ψb

m,j . These are replaced

by upwinding or with the boundary conditions, specified by some function Γ(Ω̂), as follows. For a cell k and

face j we set

(
Ω̂m · n̂j

)
ψb

m,j =





(
Ω̂m · n̂j

)
ψ`+1

m,j,k, Ω̂m · n̂j > 0, ∀ faces j in V

(
Ω̂m · n̂j

)
ψext

m,i,j , Ω̂m · n̂j < 0, face j in V \∂V

Γ(Ω̂m), Ω̂m · n̂j < 0, face j in ∂V,

(24)

where the “external” flux ψext
i,j is the value of the angular flux across the face j from vertex i in the neighboring

cell that shares face j with cell k at iteration `+1. Hence, if a face j is on the boundary of the problem

domain V , then the boundary condition is used to define the incoming angular flux; otherwise the internal

or external values angular fluxes are used depending on the orientation of the cell face with respect to the

quadrature direction. The boundary conditions we consider are either vacuum, Γ(Ω̂m) = 0, or reflection,

Γ(Ω̂m) = ψm′,i,j for m′ where (Ω̂m′ · n̂j) = |Ω̂m · n̂j | and (Ω̂m′×Ω̂m) · n̂j = 0.

For quadrature angle Ω̂m, the transport discretization computes a the angular flux, ψm,i,j for each vertex

j on every cell k. We can write Eq. 23 in matrix notation as

Tmψ`+1
m = Sφ` + Qm, φ` =

∑

m

wmψ`
m, (25)

where ψm is the vector of discontinuous angular fluxes unknowns in the mesh for angle Ω̂m, φ is the vector

of scalar fluxes constructed from ψm for all m at the previous iteration `, and Qm is the source vector

contributing to angle Ω̂m over the mesh. These vectors are in R
4Nc , Nc being the number of cells in the

mesh.
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With DSA, the source iteration is modified as follows.

ψ`+1/2
m = T−1

m Sφ` + T−1
m Qm (26a)

φ`+1/2 =
∑

m

wmψ`+1/2
m (26b)

ε`+1/2 = XT A−1X Σs

(
φ`+1/2 − φ`

)
(26c)

φ`+1 = φ`+1/2 + ε`+1/2 (26d)

where A represents the P1 equations, Eqs. 5, with the upwinding equations, Eqs. 7 or 18. Note that the

scalar flux transport residuals only contribute a source to the balance equations of the P1 equations, the

moment equations sources being zero. Similarly, the transport scalar fluxes are corrected only by the P1

equation solution for the scalar fluxes. The matrix X is in R
16Nc×4Nc . Because only the balance equation

of the P1 system will have a non–zero source, it has the (2 × 1) block form

X =




0

X0


 . (27)

The block X0 = I, where I ∈ R
4Nc×4Nc is the identity. The matrix Σs is block diagonal, consisting of Nc

blocks, each of which is a (4×4) matrix containing the scattering cross section in some cell k on the diagonal.

The description of the matrices give here assumes ordering all discontinuous unknowns by vertex and then

by cell and the block ordering of the P1 system unknowns by currents first followed by scalar fluxes.

Boundary conditions for the P1 equations are reflective when the transport boundary conditions are

reflective and vacuum otherwise. The same is true for the boundary conditions used to solve the linear

continuous finite element discretized diffusion equation in the two–level preconditioner.

2.4 Improving the Efficiency of the Iterative Solution

Krylov iterative methods are used to compute the solution of the discontinuous P1 equations. We will now

suggest two simple ways in which we can reduce the number of Krylov iterations to improve the overall

efficiency of the accelerated source iterations.

One way to improve efficiency might be to accept the Krylov subspace GMRES (or MINRES) solution of

the P1 equations after a fixed number of iterations. This can be done as long as the Krylov method converges

monotonically in whatever norm is being used to monitor convergence. For general use, though, we consider

this approach to be unacceptable because the minimum number of iterations that can be taken without

adversely affecting source iteration convergence is not known ahead of time.

Another way would be to relax the convergence tolerance. We found that we could reduce the total
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number of iterations spent solving the P1 equations in the DSA algorithm without affecting the source

iteration convergence by varying the convergence tolerance during the course of the SN iterations as follows.

Let E` be the discrete L2 norm of the relative change in cell–average scalar fluxes between two successive

SN iterations. Then we set the tolerance τ ` for the GMRES (or MINRES) solver to be proportional to E`:

τ ` =





1
10max( 1

10 , ε) if ` = 1

1
10max(min(E`, 1

10 ), ε) otherwise.

(28)

Here ε is the tolerance of SN source iteration convergence. The factors of 1/10 appearing here are chosen

conservatively. We found that this simple heuristic worked very well.

We can also improve the overall efficiency by altering the convergence tolerance of the PCG iterations in

the preconditioner for the P1 equation. We use an approach for improving the solution efficiency of nested

inner–outer Krylov methods presented in Ref. 21. This approach can be roughly described by noting that at

any particular iteration a Krylov subspace solver constructs a solution based on the solutions from previous

iterations to that point. It is therefore logical that the inner iterations should be computed with a strict

convergence tolerance in the early stages of the outer iterative solution and the tolerance can be relaxed as

the outer iteration proceeds. This is somewhat contrary to intuition and the reasons behind this observation

are as yet not fully understood mathematically.21

One way to do this would be to make the inner iteration tolerance proportional to the inverse of the

norm of the residual of the outer iteration. The discontinuous P1 equations are solved with just such an

inner–outer Krylov method, the outer method in this case being the GMRES(m) (or MINRES) iteration

and the inner method being the PCG iteration for the continuous diffusion equation preconditioner. This is

opposite to the strategy we used for the SN iterations. Assume that at some iteration n, the current outer

iteration has a residual norm rn. Then we set the inner PCG convergence tolerance to

γ =





1
10τ if n mod m = 0

1
10min(1, τ/min(rn, 1)) otherwise

(29)

where τ is the tolerance for the outer iteration. Again, we consider the factors of 1/10 to be a conservative

choice. In the problems we tried this approach also worked very well, reducing the number of PCG itera-

tions without affecting convergence of the GMRES (or MINRES) iteration. The anticipated improvements

in overall efficiency with this approach are limited, however, because the diagonally preconditioned PCG

iterations are already very fast.
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3. FOURIER ANALYSIS

In this section we present a three–dimensional Fourier analysis on tetrahedra. We can use these results to

predict how effective DSA methods in accelerating source iteration convergence on unstructured tetrahedral

grids.

The underlying Fourier ansatz is made on a three–dimensional Cartesian grid, the basic element of which

is a box of dimension ∆x×∆y ×∆z. The box is divided into six tetrahedra whose edges must line up when

the basic elements are “translated” in order to “tile” the Cartesian grid with tetrahedra. The minimum

number of tetrahedra that satisfy this requirement is six. This basic element is illustrated in Fig. 3.

∆ y

∆ z

∆ x

Figure 3. The basic element for the Fourier analysis divided into six tetrahedra of equal volume.

The tetrahedral cells on the basic element are numbered from k = 1, . . . , 6, each of the four vertices are

locally ordered within each tetrahedron from j = 1, . . . , 4. The four quantities at each vertex in every cell in

the basic element are then given the ordering i = 4(k − 1) + j. The Fourier ansatz assumes the error modes

in the quantities Φi, J
x
i , Jy

i , Jz
i , i = 1, . . . , 24, can be represented in the discrete form

Φj,k(r) = Φ̂ie
i(Λ̄·r) (30a)

Jx
j,k(r) = Ĵx

i e i(Λ̄·r) (30b)

Jy
j,k(r) = Ĵy

i e i(Λ̄·r) (30c)

Jz
j,k(r) = Ĵz

i e i(Λ̄·r). (30d)

Here, Λ̄ =
[
λx, λy, λz

]T
is the vector of Fourier wave numbers. The terms for cells in the basic element that

have faces on the boundary and which exist outside the basic element (the “external” terms Φext
k and Jext

k

in Eqs. 7 or 18) are defined in terms of quantities interior to the basic element that are “translated” by the

width of the basic element through the Fourier ansatz.

To describe this process in more detail, consult the illustration in Fig. 4. Consider the quantities that
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happen to have global indices i = 14, 15, 16 and suppose they are located in a cell on the three vertices of a

cell face that is on the left side of the basic element. Remember that although the locations of the quantities

are shown to lie just inside the vertices for illustration they are actually defined mathematically as limiting

values of the unknowns as the vertices are approached from within the cell. Now suppose that another cell

outside the basic element (not shown in the figure) has one of its faces on the right side of the basic element

and shares this face with the shaded cell inside the basic element, shown in the figure. The boundary terms

that couple the shaded cell to those in the adjacent cell sharing this face on the right side of the basic element

are denoted by a, b and c in the figure. The Fourier ansatz for the quantities outside the basic element at

those points, coming from the “exterior” values in the upwinding equations, “look like” the quantities at

i = 14, 15, 16 that are inside the basic element. We choose the “origin” of the basic element to be the vertex

at the rear lower left corner of the basic element in Fig. 4. Thus, when the equations for the shaded cell are

constructed, the upwind boundary terms are from the adjacent cell at the points a, b and c are assigned the

“translated” values of the basic quantities as follows:

at point a: Φ̂14 e i λy∆y, Ĵ14 e i λy∆y;

at point b: Φ̂15 e i λy∆y, Ĵ15 e i λy∆y;

at point c: Φ̂16 e i λy∆y, Ĵ16 e i λy∆y.

Similar assignments are made for each of the cells that have faces adjoining the exterior sides of the basic

element.

Using the symbolic algebra program MAPLE, Eqs. 5, together with the upwinding equations, Eqs. 7 or 18,

are written for all cells and all vertices on the basic element. The Fourier ansatz, including the translated

boundary terms from quantities outside of the basic element, is made in the 96 equations on the basic

element. The (96 × 96) matrix is denoted by Â. It is computed in terms of the basic element thickness

∆x,∆y, and ∆z, the Fourier wave numbers λx, λy and λz, and the constant material properties: scattering

ratio c and total cross section σt.

For every discrete ordinate m, a Fourier ansatz of the form

ψm,j,k(r) = ψ̂m,ie
i(Λ̄·r) (31)

is also made for the errors in the angular fluxes ψm,j,k of the transport equation Eq. 23. The basic element

quantities are ψ̂m,i, i = 1, . . . , 24. The upwinding Eqs. 24 introduce quantities from outside the basic

element which are represented by “translated” quantities from inside the basic element. We use the same

global ordering and the same “origin” for the basic element to be consistent the Fourier representation of
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i=14

i=15

i=16

∆ y

∆ z

∆ x

b

a

c

Figure 4. An example illustrating the Fourier ansatz. The cell of interest is shaded. The points a, b and

c lie in the cell outside the basic element that is adjacent to the shaded cell. The quantities at

those points couple the two cells through the discontinuous “upwind” approximation. The upwind

terms are represented in the Fourier analysis by the quantities for a cell that lies inside the basic

element. In this case, quantities at the points a, b and c are assigned “translated” values from the

points i = 14, 15, and 16.

the P1 equations. In matrix notation, the transport equation can be written for source iteration index ` as

T̂mψ̂`+1
m = σs

∑

m

wmŜψ̂`
m, (32)

where ψ̂m represents the vector of Fourier quantities.

For unaccelerated transport, the (24 × 24) matrix

F̂ = σs

∑

m

wmT̂−1
m Ŝ, (33)

is computed in terms of the Fourier wave number, the basic element thickness, and the material properties

using symbolic expressions from MAPLE. The maximum eigenvalue of this matrix is the unaccelerated

spectral radius. We have verified that it is equal to c = σs/σt.

Now, the DSA algorithm in Eqs. 26a leads to the (24 × 24) matrix (Î is the identity)

Ĝ =
[
F̂ + σs X̂T Â−1X̂

(
F̂ − Î

)]
, (34)

whose maximum eigenvalue is the spectral radius of the accelerated transport solution. The matrix X̂ is a

“projection” matrix of dimensions (96 × 24) corresponding to X in Eqs. 26a.

The matrix Ĝ is computed with MAPLE by combining symbolic expressions for Â−1, F̂ , and X̂. It is
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evaluated for fixed parameters and maximized over all frequencies using a Nelder–Mead simplex algorithm22

with quadratic surface fitting near suspected maxima. We found this algorithm to be essential in searching

for the maximum over the three–dimensional space of wave numbers on [0, 2π)3.

We end this section by giving an expression for the analytical spectral radius of the DSA algorithm, ρ0:
4,6

ρ0 = max
λx,λy,λz

∣∣∣ω +
c

α

(
ω − 1

)∣∣∣ , (35a)

where ω =
c

4π

∫

4Π

dΩ
[
1 + i

(
Λ̄ · Ω̂

)]−1

(35b)

and α =
1

3

(
Λ̄ · Λ̄

)
+

(
1 − c

)
. (35c)

We evaluate the integral in Eqs. 35 with a discrete ordinates quadrature in which case we denote the discrete

ordinates analytical spectral radius corresponding to that quadrature by ρ̃0. Again, we use the simplex

algorithm to search over the space of Fourier wave numbers on [0, 2π)3.

4. NUMERICAL RESULTS

In this section we will investigate the effectiveness and efficiency of the fully consistent DSA (FCDSA)

scheme using our solution method for the P1 equations. Fourier analysis predictions and measurements of

the spectral radius will be given for the FCDSA scheme will be compared to those of the partially consistent

M4S DSA scheme.8 In all the computations reported here, we use Algorithm 1 with Ã = B to solve Eq. 20

using GMRES(15). Note that same algorithm can accelerate the M4S DSA equations. Numerical results

are computed using our implementation code, ATTILAV2, as described in Ref. 1. Theoretical predictions

of the spectral radius are computed using the results of the Fourier analysis of Section 3. We consider only

isotropic scattering in which case we expect the fully consistent method to be stable and effective for all cell

widths and cell aspect ratios.

The first set of results, shown in Fig. 5, compares the spectral radius predicted by Fourier analysis to

the measured spectral radius from the ATTILAV2 transport code for a scattering ratio c = 0.9999 and total

cross section σt = 3.5cm−1 with an S4 triangular, Chebyshev-Legendre (TCL) quadrature. The results are

shown as a function of decreasing aspect ratio. The aspect ratio is defined as the three times the ratio of the

inscribed sphere radius to the radius of the circumscribed sphere. It is less than or equal to one, attaining

its maximum for a tetrahedron with edges of equal length and approaching zero as the tetrahedra become

more distorted.23

The spectral radius measurements are computed on a fixed (8 × 8 × 8) grid of boxes, each divided into

six tetrahedra, for a total of 3072 cells in the problem. The minimum aspect ratios, αmin, are listed in

Table I in terms of the dimensions of the basic elements used to generate the results shown in Fig. 5.
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The outer problem dimensions are fixed to achieve the desired aspect ratios; for example, to have a basic

element of size (2.0 cm × 1.0 cm × 5.0 cm), the problem domain is x ∈ [0, 16 cm], y ∈ [0, 8 cm], z ∈ [0, 40 cm].

Boundary conditions on the bottom, left, and back faces of the problem are reflective, the others are vacuum.

Table I. Minimum aspect ratios, αmin, in terms of the dimensions ∆x, ∆y, and ∆z, of the basic element.

∆x (cm) ∆y (cm) ∆z (cm) αmin

1.0 1.0 1.0 0.632

2.0 2.0 3.0 0.562

1.0 1.0 2.0 0.487

2.0 2.0 5.0 0.421

2.0 1.0 3.0 0.370

3.0 1.0 3.0 0.327

2.0 1.0 5.0 0.256

2.0 1.0 8.0 0.170

8.0 1.0 10.0 0.116

Sources are set to zero and the angular fluxes are initialized randomly. At the end of every SN iteration the

discontinuous scalar fluxes in the problem are normalized by the sum of the scalar fluxes over the entire

mesh. This bounds the scattering source and enables us to compute an asymptotic value of the spectral

radius in the event that a DSA scheme is unstable. We use a convergence criterion of 10−4 for the inner

iterative solution of the P1 equations and a convergence criterion of 10−5 for the PCG iterations used in

the two–level preconditioner for the P1 equations. Convergence is measured by the L2 norm of the residual

relative to the L2 norm of the source vector in both cases. The spectral radius is measured as the ratio

of the change in the L2 norm of the scalar fluxes over the mesh between successive SN iterations. Results

are reported at the end of 100 iterations for the FCDSA and M4S methods. The WLA method results are

reported after 300 iterations. These results indicate that the fully consistent DSA method is stable and

effective whereas the partially consistent method of Adams and Martin can be unstable when the aspect

ratio is small. The measured spectral radius is expected to be less than the Fourier analysis predicts because

of leakage from the vacuum boundaries. The M4S and WLA methods show a strong dependence on cell

aspect ratio and cell thickness. The M4S method becomes unstable as the aspect ratio decreases. This

is an unexpected result since the initial verification of the method in one–dimensional slab geometry and

two–dimensional rectangular mesh cells did not indicate any instability.8 The spectral radius of the WLA

method increases as the aspect ratio decreases. However, we want to emphasize that this is for a scattering

ratio very close to unity and in general the method is very effective when the scattering ratio is not so
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Figure 5. Fourier analysis and computationally measured spectral radius for DSA–accelerated transport for

the S4 TCL quadrature. The spectral radius is shown as a function of decreasing aspect ratio.

close to one. Nonetheless, in applications any degradation in effectiveness of the WLA DSA scheme is often

compensated by its computational efficiency. The fully consistent method is largely insensitive to cell aspect

ratio.

The next set of results are shown in Fig. 6. We compare the measured spectral radius and the Fourier

analysis for the three DSA schemes as before and the scattering ratio is again taken to be c = 0.9999.

This time, though, the total cross section is varied logarithmically from 2−5cm−1 to 210cm−1 and the basic

element size is fixed at (2.0 cm × 1.0 cm × 8.0 cm) for which the minimum cell aspect ratio is 0.170. The

measured spectral radius is computed on a (6 × 6 × 6) grid of boxes, each divided into six tetrahedra, for

a total of 1296 cells and the problem domain is fixed at x ∈ [0, 12 cm], y ∈ [0, 6 cm], z ∈ [0, 48 cm]. The

boundary conditions again consistent of three reflective faces and three vacuum faces. The spectral radius ρ

is expected to approach the discrete ordinates analytical value ρ̃0 in the limit of vanishing cell thickness and

should approach zero for optically thick cells.4,6 The discrete ordinates analytical spectral radius for the S4
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Figure 6. Fourier analysis and computationally measured spectral radius for DSA–accelerated transport for

the S4 TCL quadrature. The spectral radius is shown as a function of total cross section.

TCL quadrature, ρ̃0 = 0.254, is shown in the figure for comparison. For thin cells, the Fourier analysis indeed

approaches the analytical value. The measured results drop off from the exact result because of leakage as

the problem becomes extremely thin. The fully consistent scheme is stable and effective for all cell optical

thickness. The M4S method becomes unstable for intermediate optical thickness. While both the FCDSA

and M4S methods become increasingly effective as the problem becomes thick and diffusive, the effectiveness

of the WLA method degrades with increasing optical thickness.

The last set of results compares the computational effort needed to compute an SN solution with the

FCDSA method to that of the WLA DSA scheme. For this problem, we solve a one–group, steady state,

oil well logging tool problem, a 139.7 cm tall half cylinder of radius 60 cm, modeled with an unstructured

mesh of 43,012 cells.11 There are two He-3 detectors and a unit source of neutrons inside the problem. The

minimum aspect ratio for the mesh is 0.1234 while the maximum is 0.9996. The material cross-sections are

given in Table II. Isotropic scattering is assumed for all materials.
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Table II. Neutron cross sections for the oil well logging tool problem.

Cross sections (cm−1)

Material Total Scattering

Limestone 8.79672 · 10−1 8.70516 · 10−1

Iron 1.16776 · 100 9.66125 · 10−1

Water 3.13459 · 100 3.11519 · 100

He-3 4.94621 · 10−1 1.00243 · 10−4

The number of floating point operations (FLOP) needed to compute the SNsolution to a relative maximum

pointwise convergence criteria of 10−5 in the scalar fluxes on an SGI Origin 2000 processor are shown in

Fig. 7 for a range of TCL quadrature orders N . The FLOP count is a measure of computational effort not

affected by memory access issues and is independent of data layout or other system resource use.

The highly scattering, diffusive water–containing regions of the problem brings the unaccelerated spectral

radius to approximately 0.9916. This is the measured spectral radius for the S4 quadrature which needed

266.4 · 109 FLOP to converge in 2234 iterations. The FLOP count is proportional to the solution time; for

comparison, the unaccelerated solution took 215 CPU minutes to complete. Noting that this is only a one

group problem (the cross sections correspond to the lowest neutron energy group in a 47 group library), it

is clear that DSA is necessary for practical applications.

The low aspect ratio cells present in this mesh causes the M4S DSA method to be unstable for this

problem. We found that after the third iteration with the S4 quadrature the spectral radius is 1.5136 and

the method never recovers. This observation is independent of quadrature order.

The inset of Fig. 7 shows that the simplified WLA method is very efficient, taking a very small fraction

of the total solution time. In contrast, the FCDSA algorithm takes a majority of the computation time.

However, because it is so effective in reducing the spectral radius – FCDSA converged in 13 iterations and

WLA in 102 for all quadratures – the overall computation time can be less than that of the WLA method

when the quadrature order is large enough.

5. CONCLUSIONS

We have found that our fully consistent DSA scheme for DFEM discretizations of the SN equations based on

an analogous DFEM discretization of the P1 equations is stable and very effective over a wide range of cell

shapes, dimensions and optical thicknesses. For problems with a low aspect ratio, we found that the partially

consistent M4S DSA scheme can be unstable on unstructured grids while the effectiveness of the WLA DSA

method degrades for optically thick, diffusive problems. Our results were verified both analytically using our

three–dimensional Fourier analysis and numerically with the implementation code ATTILAV2. Degradation
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Figure 7. Floating point operation counts (in billions) for the oil well logging tool problem for increasing

SN quadrature order. The inset shows the percentage of the total FLOP counts used in the DSA

algorithm.

of the WLA method in very diffusive and thick problems was expected. On the other hand, the instability

of the M4S method was not anticipated in view of the previous work in one and two dimensions. The M4S

DSA scheme should probably not be implemented for general use because it is not known in advance if the

method will be stable for any given problem.

We expected that the increased complexity of the fully consistent DSA scheme could make it impractical

for some problems. But it could be more computationally efficient than the partially consistent WLA DSA

method under certain circumstances. For example, a problem may require a high quadrature order because

it contains both streaming regions and diffusive regions. We have seen that the fully consistent method was

indeed more efficient in that situation. The most promising application for the fully consistent method is

probably thermal radiative transfer in the stellar regime, where the scattering ratio is often extremely close

to one.

So far we have implemented our methods in serial codes only. Our conclusions could change when
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we extend our method to parallel platforms. For instance, solving the symmetric form of the discontinu-

ous P1 equations with MINRES, even with the less efficient symmetrized preconditioner, could outperform

GMRES(m) in parallel. Or, possibly, the computational efficiency of direct methods might be competitive

with iterative methods in parallel implementations. For example, concern over the increased memory require-

ments associated with fill–in of the matrix during factorization is alleviated to some extent on a distributed

memory platform. A discussion of the issues involved in choosing a solution method for linear systems on

parallel machines can be found in Ref. 24.

Finally, we plan to pursue methods for solving the reduced Schur complement system for use in DSA

applications. Solving the reduced system could make the fully consistent DSA method more competitive.

There are applications other than DSA that require the full discontinuous P1 solution. In that case an efficient

solution of the reduced system could be used as part of a very effective preconditioner for the full system.

Furthermore, we may be able to compute approximate Schur complement systems that could serve as stable

and effective DSA schemes. We are currently exploring these possibilities.
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21. A. Bouras and V. Frayssé, “A Relaxation Strategy for Inexact Matrix–Vector Products for Krylov

Methods,” CERFACS TR/PA/00/15, European Centre for Research and Advanced Training in Scientific

Computation, Toulouse, France (Sept. 2000). SIAM Journal on Matrix Analysis and Applications.

Submitted.

22. J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” The Computer Journal, 7,

pp. 308–313 (1965).

23. A. Liu and B. Joe, “Relationship Between Tetrahedron Shape Measures,” 34, pp. 268–287 (1994).

24. I. S. Duff and H. A. van der Vorst, “Developments and Trends in the Parallel Solution for Linear

Systems,” CERFACS TR/PA/99/10, European Centre for Research and Advanced Training in Scientific

Computation (Apr. 1999).

28


